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We consider a linear canonical transformation D] taking a gyroscopic system to 
a normal form, We show that the transformation coefficients may be chosen real. 

The transformation obtained is applied to the investigation of possible stabiliza- 

tion up to asymptotic stability of the relative equilibrium and the steady-state 

motion of a mechanical system. The stabilization of mechanical systems by 

controls uj (qt, qi’) was studied in [2-41. In this paper we pose the more special 
problem of seeking the conditions which must be satisfied by forces of partial 

dissipation in order that the relative equilibrium or the steady-state motion of 
a mechanical system can be stabilized by them up to asymptotic stability. We 
must remark that a stable mechanical system can be stabilized up to asymptotic 

stability by a force u (ql’, . . . . qn’) of an arbitrary nature if and only if it is pos- 

sible to stabilize this system by only one dissipative force p2]. 

1. Reduction of 8 gyrolcoplc ayrtem to norm&l form, Letthe 
equations of motion of a linear gyroscopic system, whose position is described by the 

generalized coordinates ql, . . ., q,,, have the form 

Here L is a function of the form 

L = 4 i (bij’qi’qj’ + &, n+fqiqj’ + K+i, n+jQiQj) (1.2) 

where the bij’(i, j = 1, . . . . 2 
ten in the Hamiltonian form 

qi’ = 8H / api, 
n 

78) are constant coefficients. Equation (1.1) can be writ- 

H = d$ 2 (Uijpipj + ai, n+jPiqj + &+i, n+jQiqj) 
i, j=l 

We assume that the quadratic form H is positive definite. In this case the roots of the 
characteristic equation of system (1.3), 

A (h) = 0 (1.4) 
are all purely imaginary and the equilibrium position qr = qx = . . . = qn = 0 is 
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be li groups of roots of Eq. (1.4). 
There exists jJ] a linear canonical transformation 

n n 

steady-state motion 557 

Xi = 2 (bijqj + bi,n+jPj), j/i = 2 (bn+i, jQj + bn+i,n+jPj) 
1=1 j=l 

(i = 1, . . ., n) 

(l-5) 

taking Eqs. (1.3) to the normal form 

2i’ = yi, y.’ = - (Qi’)” 5. 1 s 1 (i=l,..., n; s=l,..., k) (i-6) 

In the general case the coefficients of this transformation are complex. Let us find a 

transformation with real coefficients. Let E be the unit matrix; A, B be the matrices 
of coefficients of the variables ql, . . . , q,,, pl, . . . , p,, in the right-hand sides of Eqs. 

(1.3). (1.5); r be a matrix of the form 

r 
0 E = 

I 1 
- E 0 

2, u be 2 n-column-vectors ; b,, . . . , bzn be the row-vectors of matrix B; (z, u) 
be a scalar product ; Cz, C2, C’, 1 C ) be the product of the square matrix C by the 
column vector Z, the square of matrix C, the transpose of matrix C, the determinant 
of matrix C,respectively; t h,i (S = 1, . . . . k) be the characteristic index belonging 

to the s th group of Eq. (1.4). 

The matrices A’, (A’)’ h ave simple elementary divisors, because otherwise the equi- 
librium stnte would be unstable. Therefi-rre, each of the systems 

(A’)% = - hS2z (s=l,...,k) (1.7) 

has 2 (n, - n,-,) linearly independent solutions. We construct the following sequence 

of eigenvectors of matrix (A’)‘: 
i-l 

2s 
(2n,_+2i-1) = (_p-l) 

{ 
$i-1) + 2 [_ (pl), Ips-l+2fl) x 

i=l 

x Zp-ltti-l) + ($-I), jjz(2~,_l+2i-1)) z(2~,-1+21~~~ 

z(2n8_l+2i) = A#Z(2ns-l+2i-1) (i= I,..., n, - n,_l; s = 1,. .., k; no = 0) 

Here u?-‘) is some solution of system (1.7). linearly independent of the vectors 
(2n,_1+1) 

5 
(an,_ltzi-2) (ai-1) 

9 *a., 28 , while the real corfficients CZ~ are chosen such that 

(z, 
(2~5-~+2i-1),, rZF_l+2i)) = 1 

. We set 

bi = (Zy-l))r, b,+i = (zi2i’)’ 
(1.8) 

(i=n,_l+i I..., ns; s=l,..., k; no=O) 

It can be verified that equalities (1.8) define a matrix B of a linear canonical transfor- 
mation with real coefficients taking Eqs. (1.3) to the normal form (1.6). 

2, Strbllfsotion of the relative equilibrium of a mechanical 
cyrtem. We consider a mechanical system subject to holonomic steady-state con- 

straints , whose position relative to a moving reference frame zl, x2 , x3 is determined 
by the generalized coordinates ql, . . . . Qn. Suppose that potential forces and dissipative 
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forces, not explicitly dependent on time, with a function F (ql’, . . . , q,,‘) of rank 11 s< ??, 
i.e. the dissipation is not total, act on the system being considered. We asswm that the 

system is in a relative equilibrium position Q1 = . . . = q, = 0 which we take as the 

unperturbed motion. If the transfer inertial forces admit of a force function not explicit- 
ly dependent on time, and if the projections of the instantaneous angular velocity onto 

the axes zl, x2 , x3 are constant, the equations of unperturbed motion in the first appro- 
ximation can be written in the form 

d aL ! 1 aL aF 
dt aq, - --=v a”li 

(i=l,..., n) (2.4) 

where L has the form (1.2). At first we shall assume that the Hamiltonian H correspond- 

ing to L is a positive-definite quadratic form in Q1, . . . . qn, P11 '.'9 pn. We repre- 

sent the function F in the form 11 

In the normal variables found with the aid of the real canonical transformation in 

Sect.1, Eq. (2.1) and the functions F, ‘pl, . . . . ‘pp take the form 

P P 

Xi’ = 7Ji + 2 dijqj, yi’ = - h8aXi + 2 &+i, jcPj 
j=l i=l 

(i = n,_l -+ 1, . . ., n,; s = 1, . . ., k) 

(2.3) 

F = - f i (aijxixj + 2nijxiYj + art+i, n+jYiyj), 

n 

cur = 2 (crjxj + cr. n+jyj) 
i, j=l j=i 

Uij = fj CpiCrjr %ti, ntj= Cr. n+iG, ntj9 nij = 2 Crier. ntj 
t=1 r=1 r=1 

Let F 11 cp:’ , ***t cpg’ be parts of functions F, ‘pI, . . . , ‘pp, depending only on x1, . . ., 

x71,, Y,. . . ., Yn,. To the form Fl we apply successively a linear real transformation, the 

same one for the series of variables zl, . . . . x,,; y,, . . . . Y,,, taking the form 

fl = i (aij + &2an+i, n+j) Xixj 
i. j-i 

into a sum of squares, and an orthogonal transformation taking the skew-symmetric form 

fz = i (nij- nji)XiYj 
i. j=l 

into a canonical form [5]. In what follows we retain the old notation for the new coef- 
ficients Ctij, n:j, 4; and for the new variables zi, y; . We note that the transforma- 

tions being considered do not alter the form of Eqs. (2.3). 

Theorem. For dissipative forces to stabilize in the first approximation a normal 

varialjle 21 zp to asymptotic stability, it is necessary and sufficient that the coefficients 

of function F, 

I;,=-_+ i (UijXiXj -t 2ll,jziYj + %ti, n+jYiYj) (2.4) 
i, j=l 

aiJ + h12%I+i, n+j = 6ij7 nrl - n,, = 0 (r, t#l, 2; 3, 4; *. .) 
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satisfy the inequalities 
1 Gs, V(nr, If1 - w*1J2 - 1 #O (2.5) 

Proof. Necessity. If 1 > S, i.e. the variables ~1, yl do not occur in function 

F,, then vi, . . . . ‘pp do not depend on these variables, therefore, Eqs. (2.3) admit of 
the nontrivial solution 

XL = Cl cos h,t + DL sin h,t, Xi=_l/i = 0 (i#l) 

Let 1 < s. We take 1 = 1. We consider the sum 

v=i[( GlT G,n+2Q2 + h12 
( 
++CI,n+l)2] = 

f==l 

i-1 

If the equality hia (n 12 - n2,)2 = 1, has been fulfilled, then, according to (2.4), v 
vanishes, whence follows 

cl.1 = + k,n+2, CC4 = T~lcr,Tl+l (r=l,. . .,p) 

In this case Eqs. (2.3) admit of the nontrivial solution 

xl = Cl cos hf + D1 sin h,t, Xl’ = 91, x2=+Y1/4, Y2=52' 

xi = yi = 0 (i = 3, . . ., r,r 

Consequently, the variable x, is not stabiIized up to asymptotic stability. 
Sufficiency. Since dH / dt = F, where F is negative-constant and H is 

positive-definite, it follows from the Barbashin-Krasovskii theorem [6, 71 that the motion 
tends asymptotically to those trajectories along which F 3 0. The equalities [6] 

Xi* = yi, y*'= -_h,zXi (t = 1, . . ., m) (2.6) 

q(l) - () (2.7) T - (r= 1, . . ., P) 

are fulfilled on these trajectories. Substituting the solution of Eqs. (2.6), 

Xi = Ci cos hit + Di sin h,t, yi = - Cih, sin h,t + Di A.1 COS hit 

into equalities (2.7) and taking into account that the functions sin h,t. and cos h,t 

are linearly independent, we obtain 
L) s 

vr = 2 (c,Jr i- cr. n+ADJ = 0, wr = 2 (c,@, - cr, n+ACJ = 0 (2.8) 
I=1 1=1 

(r = 1,. . ., p) 

If s = 1, then C, = D, = 0. If s > 2, Eqs. (2.8) are equivalent to the equality 

V = i (v,2 + w,2) = Cl2 + D12 + C22 + D,* + 2h, (n12 - nzl) (C,D, - C,D,) + 
r=1 

+ v,(G, 4, . . ., C,, D,) (2.91 

where V, is nonnegative. When condition (2.5) is fulfilled, the function (v - v,) 
is positive definite, therefore, equality (2.9) is satisfied only for Cl = D, = C, = 
Z?!z = 0, whence follows x1 = 0. The assertion is proved. 

For n, = 1 the asymptotic stability condition takes the form 
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a11 + h2%+1, n+1# 0 (2.10) 

From the theorem’s proof it follows that inequalities (2.5) are the conditions for the 

absence of nontrivial trajectories of Eqs. (2.1). along which the equalities 

‘p[ = 5 Cijqj = 0 (f = 1, . . ., I4 
$4 

are fulfilled. Expressing from these equations the last p generalized coordinates in terms 
of the remaining m = n - p and substituting this expression into Eqs. (2.1). we go 

on to investigate the existence of nontrivial trajectories of equations of form (1.1) with 

the function 
L 1 = L (!A, Qi'v Qm+j(Qi), Q'm+j(Qj')) 

(2.11) 
(1 = 1, . . ..m. i = 1, . . ..n -ml 

along which are fulfilled certain linear equalities 

% (Q1, * - -,Qm, Ql *, * - * , Qm’) = 0 0. = 1, . . ., PI (2.12) 

obtained from the last p equations of system (2.1). The theorem can be applied in this 

case too if we set L = L1, F= - l/2 b2 + * ** + *pa)- 
For example, if n = 2, F = (c,,q,’ -I- c12q2’)2, then the function 91 is 

+I= &’ (1 + ~1~ / ~12~) q1’ + @II / ~12) (b,,’ l - b,,‘) q1 

since without loss of generality we can set 

L = l/2 r(ql’)” t- (q2’)” + &,‘w2 + bs’qr’ + h,‘q221 

Conditions (2.5) are not fulfilled only when s = 0, i.e. $+ z 0, whence follow 
b14’ = 0, bb4’ = bs3’. Thus, the relative equilibrium of a mechanical system with two 

degrees of freedom, with b14’ # 0 , can be stabilized up to asymptotic stability by any 

dissipation of rank p = 1. 
Example 1. We consider a frame, rotating around a vertical line, with a mathe- 

matical pendulum attached to the frame’s rotation axis by means of elastic springs, so 

that the vertical plane in which the pendulum is located and the pendulum’s suspension 

point can accomplish, respectively, torsional and vertical oscillations. The kinetic ener- 
gy T and the force function U are 

T = ‘/L ?n[(~‘)z + 12 (cp’)z + % 1 sin ‘p$‘p’ + I2 sin2 ‘po2 + 2~%1 sin2 cp$ ‘+ 2’ sin2 Cp (‘$?‘I 

U = -1/2 k,S - 1/z k,$2 -j- mgZ cos cp -/- mgx 

Here Y is the angle between the vertical plane and the plane of the frame, z is the 
displacement of the pendulum’s suspension point from the end of the undeformed spring, 

9 is the pendulum’s angle of deflection from the vertical, k2, k, are the stiffness fac- 
tors of the springs, m, 1 are the pendulum’s mass and length, o is the frame’s anglular 
velocity of rotation. 

As the unperturbed motion we take the solution 
(11 = q2 = q3 = 0 (2.13) 

~1=Z(cp-~o),q2=x--o,q3=~1)~~~~~~=~~(~~2~,~0=mglk2) 

The equations of perturbed motion in the first approximation are written in form (2.1) 
with the functions L and F 

L = ‘hm [(ql’)’ + 2 sin ‘poq1’q2’ + (q~‘)~ + sin2 ‘p. (q3*)2 + 201 sin 2 (poqlp3’] - II2 [(w2 _ 

- g2 / Z202)q12 + k,qz2 + (k3 / Z)q%] ; F = - '/2 (ClIQl' + c1242' + s3q3')2 
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The conditions for the positive definiteness of N are 

Ii, > 0, k, > 0, wa - g2 / P w2 > 0 

If we take k, / IG, = 48sec-2, k,l m = 11m2 /wc~, o = 6serl, 1 = 0,54 m. then the 
function H is 

H = ‘12 rf~ @PI’ - 4?~p,p, i- 4jQ + 413~3~ - 8 P??P,P, + 63qla + 4892” + 36q& 

The roots of characteristic equation (1.4) are all distinct, therefore, an analysis of stabi- 

lity condition (2.10) leads to the conclusion that solution (2.13) is asymptotically stable 
when the nonequality 

@ita + c&af Ic13~ + (~12 + ~lf~~j~,,)~l t~13~ + (27~1, I u's - 16~11)~I # 0 

is fulfilled. 

Example 2. We consider a rigid body moving in a central Newtonian force field 
in a drag-free medium. A material point of mass m is located inside the body. We as- 

sume that the center of mass 0 of the mechanical body - point system moves along an 
unperturbable circular orbit with angular velocity 0. Let C be the center of forces, 

CXtXaXs be a fixed reference frame, &clqza be an orbital coordinate system, Q~rlly,y, 

be a coordinate system with axes directed along the body’s principal central axes of 
inertia. We take the angles 9, 6, 1, respectively, as the generalized coordinates ql, Q~, 
~[9], defining the position of ~,:/r?/~~a relative to UZ,Z~Z,, and the coordinates 44: 45 

defining the position of the point relative to O,Y,~/~,I/~ 

2/f = fi (rl&t $i) (i = 1, 2, 3) 
Let the equalities 

1*0 = fa” = (afli a&l = fiqfr i fxp)* = 0 

be fulfilled, where fro is the value of function f ((14, q5) at ~4 = qs = 0. To ensure the 
asymptotic stability of the relative equilibrium q1 = . . . = QS = 0, which we take as 

the unperturbed motion, we introduce viscous friction with a dissipative function F = 
-r/Q l($JJ’)” i- (@+)a] _ 

The equations of perturbed motion in the first approximation have form (2.1). where 

2L = A, (q1’)2 + (A, -k f~ijl~~) (q~‘)’ i- (A3 -/- mrinl”) (~J’Y i- 

+ “(0 (A, + A, - i13) f&(12’ i_ [(.4, - A3)qP + /1 (A, - A3 - %fl~,'k~~" 

-j- 3 (*d, - A2 - ~~ililo~)q3~]02 + nz,{(n4@ -;- naq,'j2 + (f%q,' + krjs')' i- 2f,,1(fl4(14* + 

-; 'ricp')q3~ - (b4Q1' -+ baq5’)qz’l + 3/,,0* [(im,iaqi%q*~ + 2 (a211 / aq4aq40 :< 

‘< (,((Ij -(- (p/*/ &p”)“qa’ -;- sq, (b,q4 + bsqs) - 643 (w4 3 aw)l - (b4% + ~~~~W~ - 

- k4@ - kjq2 

TO investigate the asymptotic stability we examine the function /‘t. introduced earlier 
by equality (2.11). obtained from the function L for 44 - I’ = (is = ‘ii’ = 0. The func- 
tions $r, & from equalities (2.12) are 

$i = 4obi+B (I,, / B2)qa + 3ni+, (n, - B, - fi3)w2qg - ZJ++~ (I,, /B.&I’ 

Bi = At + m,flr)‘f (i = 2. .7), 1,s = (A3 - Al - -4,)~ B, = AZ 

If the nonequality 
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B,B2 (Bz - Bd2 + V&T - B,P, [--12B, (B3 - 13,) - SB, (8, - B,) - 3 (fj, __ 

- B, - BP1 i- 4b2 (B3 - B2) (B3 - B,) # o (2.14) 

is fulfilled, the roots of Eq. (1.4) corresponding to the Lagrangian L, are all distinct, and 
the asymptotic stability condition (2.10) can be brought to the form 

42 (B2 - B, - B2) (be” + bs2) (d + 05~) # 0 

If nonequality (2.14) is violated. n1 = 2 and the asymptotic stability condition obtained 
from criterion (2.10) is 

11, (B, - B, - BJ (baas - &J # 0 

3, S trbiliartlon of the cterdy-rtrte motion. We consider a mecha- 
nical system subject to holonomic steady-state constraints, whose position is determined 

by the generalized coordinates ql, . . . . q,,, where the last k coordinates are cyclic. We 

take it that the indices r, s vary from one to (n - k), while the indices m, I from 

(n - k f 1) to n. Suppose that potential forces with a force function U = IJ (9,), 

dissipative forces with a dissipative function @ = - 1/a [(qn_k+1)2 + . . .+ (qn’)2] , 
and certain constant forces Fm act on the system being considered, such that the system 

admits of the motion 

Let the klnetlc energy T beq’ = ” qm’ = ‘A’ = ‘Onst 
(3.1) 

. . n -, 
T = $ 2 aijqi’qj 

Y 

i, j=l 

Solution (3.1) is asymptotically stable in the first approximation [lo] if there do nor 
exist nontrivial trajectories of equations of form (1.1) with the function 

along which the equalities 

(3.3) 

are fulfilled. Let us apply the transformation proposed in Sect.2 to the function L and 

to the function 
F=-+r,(pm2 

m 

Then the conditions for the absence of such nontrivial trajectories, and, consequently, 
the asymptotic stability conditions, take the forms (2.5), (2.10). 

Example 3. We consider a me&hanical system which is a gyroscope in a gimbal 
suspension contained in a casing which is rigidly attached to a rod. The rod can rotate 
relative to a fixed point 0,. The gyroscope’s center of gravity is located on the rod’s 
axis at a point 0. The rod, the casing and the gimbals are taken to be weightless. Let 
0,X,X2X3 be a fixed coordinate system with the OIX,-axis directed vertically upwards, 
Or,r,s, be a system fixed on the rod, where the Ox,-axis is directed along the rod from 
point 0 to the point O,, while the axis of the outer gimbal is directed along Or,. 

The rod’s position is determined by angles a; and pl, where p1 is the angle between 
the Ox,-axis and the projection of the rod onto the plane 0,X1X,, a, is the angle bet- 
ween this projection and the 0,X,-axis. The gyroscope’s position relative to OX,X,X~ is 
determined by angles a, fi, r pl]. The kinetic energy 2’ and the force function U are 
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27’ = MP [COG /31 (cQ’)~ + (sir? a, + cos2 fll) @‘)sl + A, (a’ cos p + /31’ cos /3 -I- 

+ al’ cos fll sin a, sin j3 + al’ sin pi cos a sin fl)2 + A, (6’ + ccl’ cos pi cos a - 

- a,’ sin fil sin a)* + A, I(a’ - al’sin 131) sin fi + T’ - (al’ cos PI sin a + 

+ aI’ sin p1 cos a) cos fi]” 

U = -MgZ cos fil cos u1 - l/z k, (a - a,J2 - ‘/z k, (fi - p# 

where M is the gyroscope’s mass, Al, A, are, respectively, the equatorial and axial 
moments of inertia of the gyroscope, I is the distance O,O, k,, kt are the coefficients 

of elasticity of the springs fixing the position a = aO, 6 = fi,,. The coordinate 7 iscyciic. 
Let F5 be a constant moment balancing the moment of the dissipative forces, namely, 

- ky’ on the steady-state motion 

a, = fil = 0, a = a, = X ! 2, l? = PO = X 14, 7’ = To’ 

In such a case, if for the perturbations we retain the notation of the’original variables, 

the functions L and ~5, defined by equalities (3.2) and (3.3), are 

2L = ML2 [(zl’)” + (PI’)~] + l/~Ai (2. + Bl’ + ~1.)~ + A1 (p’)2 + 1/2A3 (2' + PI' - x1*)2 + 

+ v/z A3yo.P (L-Q + PI’ + r*) - Mglzl” - MglPlZ - k& - k,?$ (3.4) 

qI5 = v/- / 2 (U’ + PI’ - 91.) 

Setting a = a, - f& in expression (3.4), we obtain the function Ll 

Li = ‘/a [(MP + 2A1) (xi*)? + -111’ @‘)” + A1 (8.)” + 2 l/i! AIL(o*PcL~' - 

- (Mgl + kl) ~112 + 2k1r$l- (Mgl + kl) PI” - krp’] 

The function $ from equalitv (2.12) has the form 

‘# = h-1 1.41 + MP) /!h + [ - /cl (Al + 411”) + A,Mgl] ~11 - l/j / ~&o’M~~P 

If we assume that the roots * h,i, f h,i, t hai of Eq. (1.4) corresponding to L, are 

all distinct, then the condition for asymptotic stability with respect to the normal varia- 
ble xi takes the form 

AlMgl - k, (Al + Mi?) [I + k1(.11Pbi2 - Mgl - kl)-l] - -43’ Ml2 (ro’)2hi2 (Alhi - 

.-- k,)-’ + 0 

The author thanks G.K. Pozharitskii for valuable comments on the paper. 
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ON A GAME PROBLEM OF CONFLICTING CONTROL 

PMM Vol. 36, Np4, 1972, pp. 598-605 
N, N. Subbotina 

(Sverdlovsk) 

(Received January 31, 1972) 

We consider a differential game of guidance - evasion whose solution we are 
required to find in the class of pure position strategies. It is shown that the intro- 

duction into this problem of information discrimination of the opponent essen- 
tially distorts the meaning of the original game problem. It is known n-31 that 

a differential game of guidance-evasion has a saddle point in the class of pure 
position strategies if the right-hand side of the equation describing the system’s 

dynamics satisfies the condition 

max,min, s’f (t. 2, u, u) = min,max, s’f (t, r. u, u) 

where the maximum and minimum are computed over admissible values of u 
and v; s is an arbitrary n-dimensional vector, the prime denotes the transpose. 
However, if the stated condition is violated, then, in general, an equilibrium situ- 

ation does not exist in the class of strategies. Here the game’s outcome depends 
essentially on whether the players have information on the controls realized in the 
system. A typical situation is when the players do not have such information 

available to them ; in this case an interesting problem is that of seeking the posi- 
tional minimax and maximin pure strategies of the players. Below we use the 

results obtained in [5, 6, 91 to construct such strategies in one example of con- 
flicting conrrol. 

1. The physical sense of the problem being investigated is the following. We have 
a material point moving in a horizontal plane. The motion of this point is controlled 
by two players who form controls which are two-dimensional vectors II /tl and c 1 !I. 
The first player chooses the control u [t] , while the vector z’ ItI is chosen by the second 
player, and the realizations of the controls satisfy the constraints 

// I( 111 /j < II. /I I. It1 11 s \ (1.1) 

Here and subsequently 11 J’ 1) d enotes the Euclidean norm of vector .I’. There is some free 
play in the control system. therefore, instead of the control force II‘ [/I =-~ z( I f I - L; 1 /I 

a certain force II’* [ /1 II*, I /1 -~~~ 7I* I/l, is applied to the point where the vectors 


